Field campaign results
in urban area

== L. Mortarini D. Anfossi R. Richiardone
== E. Ferrero S.Trini Castelli S. Falabino
m E. Carretto
University of Piemonte Orientale, Institute of Atmospheric Sciences University of Torino, General Physics
Alessandria, Italy and Climate (CNR), Torino, Italy Department, Torino ltaly

l.mortarini@isac.cnr.it

| 2th Annual GMU Conference
Atmospheric Transport and Dispersion Modeling


mailto:l.mortarini@isac.cnr.it
mailto:l.mortarini@isac.cnr.it

Aims

One year of turbulence measurements (12/1/07 - 4/23/08) and continuous wind
data were collected at 3 different levels (5, 9, 25m) inside the lTorino (Italy) urban
Area.

Study of the turbulence statistics in a urban PBL:
€@ Evaluation of the principal turbulence characteristics

@ Testing of turbulence parametrization (with modelling
purposes)

@ Focus on Low-Wind conditions

We present a preliminary analysis of the anemometric data from 4/14/07 - 5/1/07.
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Campaign Instruments

3 Sonic Anemometer
3 levels: 5,9,25 m »
f=20 Hz

Radiometer
Temperature profile up to 1000 m

spatial resolution 50 m
f=60 GHz

Wind Profiler
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Estimated Parameters

In our preliminary analysis the attention was mainly focused on the turbulence
parameters which enter inside the numerical dispersion models.

All the statistics are evaluated considering subsets of | hour (7200 data).
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Estimated Parameters

In our preliminary analysis the attention was mainly focused on the turbulence
parameters which enter inside the numerical dispersion models.

All the statistics are evaluated considering subsets of | hour (7200 data).

O-ias’iaKi Uy 3 Wy 5, 24 , >l<7L

AN N

: High-Order
Lagrangian Models Closure Models All the turbulent fluxes are

evaluated at 5 m.

To test the turbulent parametrizations
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Estimated Parameters

In our preliminary analysis the attention was mainly focused on the turbulence
parameters which enter inside the numerical dispersion models.

All the statistics are evaluated considering subsets of | hour (7200 data).

We used our data to test two turbulence parametrizations:

Hanna (1982)
Degrazia et al. (2002)
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Turbulence Parametrizations:
Hanna (1982)
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Turbulence Parametrizations:

Stable Case
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Turbulence Parametrizations:

Degrazia et al. (2002)
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Turbulence Parametrizations:
Degrazia et al. (2002)
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(1982)
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Nieuwstadt (1984) e Smedman (1988)

|
Moraes et al. (2005) Normalized Standard Deviation (5 m)
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Eulerian Time-Scale

Eulerian Auto-Correlation Function:

Exponential Case

2007-04-12 00:30:00 2007-04-12 06:30:00
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Eulerian Time-Scale

Eulerian Auto-Correlation Function:

Low-Wind Case
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Eulerian Time-Scale

Eulerian Auto-Correlation Function:

Low-Wind Case

2007-04-14 02:30:00
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- — B; Hay and Pasquill (1959)
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Lagrangian Time-Scale (9 m
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High-Order Statistics

In the (S, K) space an inferior limit for the Kurtosis exist (Kendall and Stuart,
1977):

K > S~

which limits the Quasi-Normal Approximation in the range of the Skewness
values.

Tampieri et al. (2000) proposed the relation:
= 870 (SQ I 1)

with ag = 3.3 for a shear flow, Maurizi (2006) demonstrated that K-values
above this curve correspond to damping terms for the turbulent kinetik energy
and related these values to stable conditions, suggesting a dependence of

on the stability:
&
o =00 ()



Maurizi (2006)
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Maurizi (2006)

a0 =33

Kurtosis

o
—

(00

Vertical Skewness/Kurtosis -2 <2/L <
Oy = 3.63+0.2

WY ——_7 SV — L B
Cuzs = 3.

O Quasi-Normal
/~ Approximation




Vertical Skewness/Kurtosis 1<z/L <
Oys = 4.7+0.3

WY = JJ — L B
Cwzs = 4.

o
—

Maurizi (2006)

a0 =33

o0 —

Kurtosis

\é A N
A O
\ A
\ AT A A ,
\ A\ A O /
E B} /
\ A /
\ =N ,
\ s p

Quasi-Normal
/~ Approximation




3.0

Stream-Wise Wind Velocity

- Oy < 3.3

O u25m

5.5

A wbm
w 9m
O w25m

Ay > 3.9




Conclusions (i)

Parametrizations and Lagrangian Time-Scales

@ The measured velocity standard deviations follows the
Moraes et al. (2005) best fits, while the two considered
parametrizations (Hanna, 1982 and Degrazia et al. (2002)
underestimates the observations in stable conditions.

€ Hanna (1982) T, estimates perfectly fit the measured value,.

@ Both parametrizations, as expected, are not able to take in to
account the urban environment. In particular the Lagrangian
Time-Scale behaviour during the day of the horizontal
components is almost opposite to the parametrized ones.

(preliminary results)



Conclusions (ii)

High Order Moments

@ For Low-Wind condition is it difficult to assume a parabolic
dependence of the Kurtosis on the Skewness.

@ The wind velocity vertical component shows a dynamic
stability for low-wind and for stable conditions.

@ The a, e Qu coefficients shows an opposite dependence

onz/L.

(preliminary results)



Future Works...Wavelets
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Thank you!
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